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Abstract
A gclleral purpose solver package for constructing ancl solving a ra~lge  of sparse

linear systclns  arising from cliscrctization of PDEs oIt unstruct  ured meshes is dcvelopccl.
Once the sparse synllnetric  complex matrix is constructed, it can bc solved by either a
prcconditionccl  bi-conjugate gradient solver, a two-stage Cholcsky  LDLT  fact orization
solver, or a hybrid solver combining the above two methods.

1 Introduction
Discrctizing  PDEs on unstructured meshes often leads to linear systems with sparse coef-
ficient matrices. For a large class of problems, the sparse matrix is symmetric, but is often
complex as in electromagnetic. For these class of sparse n Iatrix system, few analytical
results are known, and their solutions are largely by trying several different methods. Typ-
ically, one first tries preconditioned hi-conjugate gradient (P] ICG) to see if it converges. If
not, one may try a Cholesky factorization LDLT (not the L]/T for positive definite matri-
ces), which is more robust and stable than the PBCG,  although taking lol[gm CPU time
and more memory.

For these reasons, we developed a solver package, which provide these different solution
methods with a unified user interface. Once the user sets up the geometry (mesh) data
and edge information (the matrix elements in the sparse matrix), he may try to solve the
system using the method best suited to his problem, or switch to another for comparison.

2 Domain Decomposition
A unique feature of the solver is that, from users viewpoint, they are dealing with a local
mesh on each processor, and the sparse matrix construction/assembly proceeds exactly as oli
a sequential computer. Connecthg local patches into a global mesh and thus local matrices
into a global one is handled by the package. This is achievecl  by using a. utlique geometric
approach [l] (see also [2]) in domain decomposition, instead of the more common algebraic

approach where columns (or rows) of the sparse matrix are distributed to a processor[2].
Subdomains  of the unstructured grids are divided amen?, processors. The subdomain

boundaries always cut through edges. Grid points sitting on tllc domain (processor) bound-
aries are shared among the processors. A matrix clement representing all edge on the sub-
domain boundary between processors PI ,PZ is split into two pieces Aij = A\f’ ) +- Af~2) where

the finite clement on processor P1 contributes to A\f’) and the finite element, on processor p2

Contriblltcs  to A(Pz) ; no communication is needed to assemble the matrix element A$l ‘pa).

In this way, calc~lation  of the edge information is entirely based on the local mesh. This
significantly cases the programming effort for the user.
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2 D ING AND FIXULARO

3 Preconditioned Bi-Conjugate  Gradient
P13CG  illvolvcs  two kh~ds of communications. One is involved in the dot product of two
vectors, which is easily done using a global  sum of t)lc partial clot product. The other is
the matrix-vector multiplication. This involves fairly sophisticated col~llll~ll~icatio~ls  within
the row based (or column based etc) dccolnpositiolls. But in our decomposition, this
is rather straight forward, involving a local matrix ]nultiplication  and an inter-processor
communication called glol.xdizeo. First, since all entries arc local] y stored, the local It =
M. V. procccds  as just like on a sequential computer. Afterwards, the only entry in V1 which
arc not complctc  arc those shared boundary points, which can be completed by summing
up all contributions from the several processors which share this point.

At present, only diagonal preconditioning is implelnented,  Incomplete Cholcsky  prccon-
ditioncrs arc not implemented, because their usefulness for the symmetric complex matrices
has not been documented. Only the nonzcro elements of the sparse matrices arc stored.

4 Two-stage Cholesky Factorization
Our domain decomposition naturally classifies the grids into interior grids and bound-
ary grids. This division leads to a well structured ~Jattern of sparsity  which allows our
Cholesky factorization method to proceed in two phases. Starting with the global equation

(z : ) ( : : ) =  (k)
where ~{~i stands fOr interiOr COUpled  to illteriOr, and Kbb for

boundary coupled to boundary, etc. Since each block in Kii reside entirely on one proces-
sor, we can do a complete local LDLT factorization t o obtain its inverse, thus obtaining
(Kbb - KbiK,~lKib)Zb  = fb - KbiKt~lfi  Or Shnp]y  kb~zb  = f, This  recluccd  CquatiOn  i s  m u c h
smaller because it deals with only boundary grids. Kab is stored as a variable-banded (Sky-
line profile) matrix, and the equation is solved usint;  a parallel column-based Choleksy
factorization, much like a dense matrix. Currently, Kai K,~l Kib is calculated using a column
approach; this scales as N~Nb on a processor and dominates the CPU time, .dthough it
remains a constant as the problem size increase with a incrcasi]lg  number of processors.
Taking fully the advantage of the sparsity  of ~{ib will reduce this to N).

We can also solve the reduced equation by the 1’BCG,  instead of using the parallel
Cholesky factorization. This leads a two-stage hybrid solver.

5 Performance
We have completed the solvers package. The package is applied both to a finite element
solution of clcctromagnctic  wave scattering from conducting sphere, and to a finite difference
solution of a heat distribution problem. We measured the scaling bc}lavior of the solver for
the heat distribution problem by increasing the pro~lcln  size N pro~~ortional to number of
processors while fixing 1600 grid points per processor. ‘rhc PJ3CG method scales as N, and
the two-stage methods scale as <~; both  of them are expected theoretically.
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